

The potential for windpower in the Baltic Sea

4th September 2013

Stanisław Paszkowski/Michał Gronert

DNV – An Independent Foundation

Offshore Wind - Combining DNV competences

25+ years of hands-on experience with wind turbines

40+ years of offshore oil & gas experience

Global leader in project risk and certification of offshore wind projects

The potential for windpower in the Baltic Sea

Baltic Sea Environment

- Stable wind conditions
- Better wave condition in comparison to the North Sea
- Longer Weather Window
- Water depths 25 40+ meters
- Limited icing

The potential for windpower in the Baltic Sea

Location

- 33 000 km²
- Total area
- 2 500 km²

Potential area for offshore wind farms

- Limitations:
 - Natura 2000
 - Significant distance to shore
 - Military zones
 - Oil & gas licences
 - Traffic routes

Source: http://www.transport.gov.pl/

The potential for windpower in the Baltic Sea

Infrastructure

- Harbours
- Storage areas
- Shipyards / manufacturing
- Engineering services
- Technical Universities

Source: PTMEW "Perspektywy rozwoju MFW w Polsce"

Source: http://www.gdanskshipyard.pl

Estimated prospect grid capacity for offshore wind

Year 2020

1 GW

Year 2025
another 2 GW

3 GW without investments
dedicated for OWF

6 GW potential capacity
followed by further investments

Source: http://www.pse-operator.pl/

Offshore Wind Farms – Challenges

Wind Energy Uncertainty

Issue

- Non real on-site wind data
- Cost of fixed met mast installation are high
- Wind resource estimates have large uncertainty
- Aerodynamics loss factors are not well understood (e.g. wakes and turbulence)
- Mitigation
 - Offshore measurement (fixed tower, novel solutions) over sufficient period of time (> 2 years)
 - Data sharing
 - Transparency of energy estimates

Site Conditions – Marine Environment

Issue

- The weather and sea conditions data
- Weather window for offshore work
- Distance to shore grater than 12 NM
- Varying water depths and sea bed conditions across a site

Mitigation

- Solid, site-specific information
 - Measurement campaigns
 - Data mining
 - Geotechnical investigation
 - Safety factors in design
- Relevant learning from oil and gas
- Development / use of equipment / methods suitable in adverse conditions

Wind Turbine Foundations

Issue

- Costly foundation designs due to:
 - Deeper water: 40m and beyond
 - Larger turbines
- Shallow-water solutions are not applicable on the Baltic Sea (12 NM from shore)
- Choice between: Jackets, Tripods
- Mitigation
 - Utilization of Polish industry manufacturing experience and potential
 - Standardization
 - Quality control during manufacturing
 - Sea bed data

Construction

Issue

- Major project size complexity
- Construction vessels availability
- Weather window challenge
- Contract strategy selection
- Supply chain and facilities
- Hiring experienced staff could be challenge
- Mitigation
 - Previous project experience cooperation with experienced partner
 - Project lifecycle engineering supervision
 - Installation concept studies
 - Plan A, B and C
 - Project Verification and Certification

Subsea Cables and Power Transmission

Issue

- Many problems during cable installation, e.g. improper cable handling
- Human introduced hazards (e.g. anchoring)
- Unplanned downtime not considered in energy estimates
- Mitigation
 - Cabling
 - Understand site-specific conditions
 - Chose appropriate cabling design (e.g. armour, burial depth, scour protection)
 - Work with experienced partners
 - Plan with contingencies
 - Electrical Substation
 - Realistic expectations for annual maintenance time
 - Include unplanned outages
 - Diligent inspections and maintenance

The potential for windpower in the Baltic Sea

Grid Connection

Issue

- HVAC or HVDC
- Limited infrastructure onshore
- Grid connection is a developer responsibility
- Uncertainty about ownership / operation of assets
- Long distance / high power will require (less proven) offshore HVDC solutions

Mitigation

- Early dialogue between developer and grid operator
- Careful evaluation of various options

Busy day at work...

The potential for windpower in the Baltic Sea

Copyright Vattenfall

Safeguarding life, property and the environment

www.dnv.com

